NEW STEROIDAL ALKALOIDS FROM Solanum Callium

G. J. Bird, D. J. Collins, F. W. Eastwood, B.M.K.C. Gatehouse, A. J. Jozsa and J. M. Swan Department of Chemistry, Monash University, Clayton, Victoria 3168

(Received in UK 3 August 1976; accepted for publication 19 August 1976)

Two new steroidal alkaloids, 25-isosolafloridine (la) and solacallinidine (lb), have been obtained by hydrolysis of the crude glycoalkaloid extracted from *Solanum callium* C. T. White ex R. J. Henderson (ms), which was collected in south east Queensland in April 1972 (voucher specimen, SN 9033, Queensland Herbarium).

25-Isosolafloridine (1a) was readily isolated and purified via its hydrochloride salt, m.p. 325-330° d. (transition 311-312°), which is sparingly soluble in ethanol. The corresponding free base, $C_{27}H_{45}NO_2$, m.p. 164.5-166.5°, $[\alpha]_D^{35} + 44.8°$ (c, 0.85 in CHCl₃), showed λ_{max} (EtOH) 239 nm (ϵ 256), and ν_{max} (Nujol) 1650 cm⁻¹, similar to the corresponding data reported for the $\$ C=N- chromophore of solacongestidine and solafloridine.¹ The i.r. spectrum of (1a) showed hydroxyl absorptions at 3390 and 3240 cm⁻¹. The mass spectrum showed the parent molecular ion at $\underline{m/e}$ 415 and a prominent peak at $\underline{m/e}$ 125 for the loss of $C_{8}H_{15}N$, a fragmentation typical of 22,26-imino-5 α -cholest-22(\underline{N})-enes.¹⁻³ This ruled out the possibility of an hydroxyl group being present in the tetrahydropyridine ring. Acetylation of (1a) with acetic anhydride in pyridine gave the triacetyl derivative (2a), m.p. 228-229°, $[\alpha]_{D}$ + 87.5° (c, 1.05 in CHCl₃), the enamide system of which showed a triplet at δ 5.14 (H23, olefinic) in the 90 MHz p.m.r. spectrum, λ_{max} (EtOH) 236 nm (ϵ 7444), and ν_{max} (Nujol) 1725 and 1645 cm⁻¹ (cf.¹). The 90 MHz p.m.r. spectrum of (1a) showed singlets at δ 0.69 (18-Me) and 0.80 (19-Me); doublets at 0.91 (27-Me) and 1.10 (21-Me); an apparent doublet at δ 3.03, for one C26-proton, and a broad three-proton multiplet in the region 3-4 for H3 α , H16 β , and the other C26-proton. The 22.62 MHz ¹³C.m.r. spectrum of (1a) confirmed the presence of two secondary hydroxyl groups. The tentative assignment is as follows, with carbon atom number followed by the chemical shift (p.p.m. with respect to $SiMe_4$): 1, 37.0; 2, 31.4; 3, 71.0; 4, 38.2; 5, 44.9; 6, 28.7; 7, 32.0; 8, 35.0*; 9, 54.3; 10, 35.5; 11, 21.1; 12, 40.4; 13, 44.2; 14, 53.3; 15, 35.2*; 16, 76.6; 17, 63.7; 18, 14.0; 19, 12.4; 20, 44.7; 21, 18.9; 22, 177.1; 23, 29.7; 24, 27.4*; 25, 28.0*; 26, 56.1; 27, 19.2. The chemical shifts for the carbon atoms in rings A and B correspond closely to those for 5α -cholestan- 3β -ol.⁴ With insufficient model compounds available there was uncertainty in the location of the second hydroxyl group, but the p.m.r. and ¹³C.m.r. spectra together indicated that it was at C15, C16, or less likely, at C12.

The structure of (1a) was determined by X-ray diffraction measurements on the hydrochloride salt. This compound, $C_{27}H_{45}NO_2$ ·HCl, crystallizes as large colourless rectangular plates in the monoclinic space group P2₁ with unit cell dimensions: <u>a</u> = 6.761 (2), <u>b</u> = 30.563 (3), <u>c</u> = 6.368 (1) \mathring{a} , β = 94.95 (1)°, <u>u</u> = 1311 \mathring{a} , <u>z</u> = 2, <u>p</u>_m = 1.12 (2) g/cc³, <u>p</u>_c = 1.14 g/cc³.

The structure (Fig. 1) was solved using conventional direct methods.⁵ The intensities of 1788 independent reflections with $3^{\circ} \leq \theta \leq 54^{\circ}$ were measured on a Philips PW 1100 diffractometer using Cu-K_a radiation ($\lambda = 1.5418\text{\AA}$). Of the 1616 reflections with I $\geq 3\sigma$ (I), four reflections were considered to be extinction-affected, and hence not used in the subsequent least-squares refinement,⁶ which at present, with anisotropic thermal parameters on all non-hydrogen atoms, gives R = 0.053. The molecules lie approximately parallel to the y axis and each chlorine atom is linked to three steroid molecules by hydrogen bonding via two oxygen atoms and a nitrogen atom. Further refinement is in progress and full details of the X-ray analysis will be published elsewhere.

Fig. 1

Countercurrent distribution of the crude aglycone mixture gave a second alkaloid, solacallinidine (lb) $C_{27}H_{46}N_{2}O$, m.p. 175-178°, $[\alpha]_{D}^{35}$ + 51.3° (c, 0.90 in CHCl₃) which showed λ (EtOH) 239 nm (E 247), and v (Nujol) 1655 cm⁻¹. The i.r. spectrum showed strong absorption at 3350 cm⁻¹ for -OH and -NH₂. The mass spectrum showed the parent ion at $\underline{m/e}$ 414, and a prominent peak at m/e 125. Acetylation of solacallinidine (lb) with acetic anhydride in pyridine gave the triacetyl derivative (2b), m.p. 152-153° $[\alpha]_{p}^{35}$ + 63.5° (c, 0.92 in CHCl_); λ_{max} (EtOH) 235 nm (ε 7920); V_{max} (Nujol) 3450, 3210 (<u>NHAc</u>, free and H-bonded), 1720 (OAc), 1660 (NAc of enamide), and 1635, 1550 cm⁻¹ (primary amide). The mass spectrum showed a peak (25%) at m/e 541 (M-1), a phenomenon characteristic of primary amides. The 90 MHz p.m.r. spectrum showed a multiplet at δ 3.75 (H3Q), an apparent triplet at 4.73 (H16 β), a triplet at 5.15 for the olefinic proton at C23, and a doublet at 5.30 for the 3-NHAc. The 90 MHz p.m.r. spectrum of solacallinidine (lb) showed singlets at δ 0.69 (18-Me) and 0.78 (19-Me); doublets at 0.91 (27-Me) and 1.10 (21-Me); an apparent doublet at 3.03 for one of the protons at C26, and a three-proton multiplet at 3.4-3.9 for H3 α , H16 β , and the other proton at C26. The tentative assignment of the ¹³C.m.r. spectrum of (1b) is as follows:- 1, 37.7; 2, 32.6; 3, 51.2; 4, 39.5; 5, 45.6; 6, 28.8; 7, 32.1; 8, 35.1*; 9, 54.5; 10, 35.6; 11, 21.0; 12, 40.4; 13, 44.3; 14, 53.4; 15, 35.3*; 16, 76.7; 17, 63.8; 18, 14.0; 19, 12.4; 20, 44.8; 21, 19.0; 22, 176.9; 23, 29.8; 24, 27.5*; 25, 28.0*; 26, 56.2; 27, 19.2. The chemical shifts for all carbon atoms corresponded closely with those for 25-isosolafloridine (la) except for those in ring A. This indicated that solacallinidine (1b) is the same as 25-isosolafloridine (1a) except that a 3-amino group is substituted for the 3β -hydroxyl group. This was confirmed by measurement of the 13 C.m.r. spectrum of 3β-amino-5α-cholestane. The chemical shift differences between 3β -hydroxy- and 3β -amino- 5α -cholestane closely parallelled those between (la) and (lb). All of the spectroscopic evidence is consistent with structure (1b) for solacallinidine. A direct chemical correlation between (la) and (lb) is in progress. The C.D. of (la) and (1b), measured in dioxan, showed negative Cotton effects at 242 nm ($\Delta\epsilon$ -2.1), and at 242 nm ($\Delta\epsilon$ -2.3), respectively, consistent with published data⁷ for 25-S compounds of this type.

A compound described as 25-isosolafloridine, m.p. 158-159°, $[\alpha]_D^{20}$ + 56.4° (c, 0.58 in CHCl₃), was synthesised by Ripperger et al.⁸ by hydrogenation of the corresponding 20(21)-dehydro-20-pyridyl derivative. The differences in the physical constants might be due to the presence of a diastereoisomer (C20 and/or C25) in the synthetic compound.

3656

Solacallinidine (1b) is unusual in having two nitrogen atoms. The only other dibasic Solanum alkaloid is solanocapsine⁹, but a number of 3-aminosolanidanes have been synthesised.^{10,11}

All compounds reported gave satisfactory microanalyses.

Acknowledgments

We thank the Australian Research Grants Committee and the Rural Credits Development Fund for support, and Mr.A.F.Beecham, C.S.I.R.O., Chemical Physics Division, for circular dichroism measurements.

References

* Asterisks indicate doubtful assignments.

- Yoshio Sato, Yoshihiro Sato, H. Kaneko, E. Bianchi, and H. Kataoka, <u>J. Org. Chem.</u>, <u>34</u>, 1577 (1969).
- 2. K. Kaneko, H. Seto, C. Motoki and H. Mitsuhashi, Phytochemistry, 14, 1295 (1975).
- K. Kaneko, M. Watanabe, Y. Kawakoshi, and H. Mitsuhashi, <u>Tetrahedron Lett</u>., (No. 45), 4251 (1971).
- 4. H. Eggert, C. L. VanAntwerp, N. S. Bhacca, and C. Djerassi, J. Org. Chem., 41, 71 (1976).
- 5. G. Germain, P. Main, and M. M. Woolfson, 1970, MULTAN.
- 6. G. Sheldrick, 1975, SHELX.
- 7. H. Ripperger, K. Schreiber and G. Snatzke, Tetrahedron, 21, 1027 (1965).
- 8. H. Ripperger, F.-J. Sych, and K. Schreiber, Tetrahedron, 28, 1619 (1972).
- 9. K. Schreiber and H. Ripperger, Tetrahedron Lett., (No. 27), 9 (1960).
- 10. E. Schlittler and H. Uehlinger, Helv. Chim. Acta, 35, 2034 (1952).
- 11. K. Schreiber and H. Ripperger, Z. Naturforschung, 17b, 217 (1962).